BIOTECHNOLOGY-HEADER

RUS

      

ENG

Vol 35(2019) N 2 p. 49-57; DOI 10.21519/0234-2758-2019-35-2-49-57
E.N. Kosobokova1*, E.V. Sheshukova2, M.V. Pinyugina1, K.M. Konoplina1, V.S. Kosorukov1

Development of Fusion Protein Produce Technology Based on a Humanized Monoclonal Antibody Specific to Tumor Antigen HER2 and a Recombinant Human Interferon-α-2b in Nicotiana benthamiana

1Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
2Vavilov Institute of General Genetics of Rusian Academy Scinces, 119991 Moscow, Russia

*ekkos@mail.ru
Received - 21.10.2018; Accepted - 15.03.2019

REFERENCES

1. McKeage K., Perry C.M. Trastuzumab: a review of its use in the treatment of metastatic breast cancer overexpressing HER2. Review. Drugs, 2002, 62(1), 209-243.

2. Dorokhov Y.L., Sheshukova E.V., Kosobokova E.N., et al. Functional role of carbohydrate residues in human immunoglobulin G and therapeutic monoclonal antibodies. Review. Biochemistry (Mosc), 2016, 81(8), 835-857. doi: 10.1134/S0006297916080058)

3. Gül N., van Egmond M., Antibody-Dependent Phagocytosis of Tumor Cells by Macrophages: A potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Res., 2015, Dec 1, 75(23), 5008-5013. doi: 10.1158/0008-5472.CAN-15-1330

4. Vitale M., Cantoni C., Pietra G., et al. Effect of tumor cells and tumor microenvironment on NK-cell function. Review. Eur. J. Immunol., 2014, 44(6), 1582-1592. doi: 10.1002/eji.201344272

5. Asmana Ningrum R. Human interferon alpha-2b: a therapeutic protein for cancer treatment. Scientifica, 2014. doi: 10.1155/2014/970315

6. Hutmacher C. and Neri D. Antibody-cytokine fusion proteins: Biopharmaceuticals with immunomodulatory properties for cancer therapy. Review. Adv. Drug Deliv. Rev., 2018, Sep 7, pii: S0169-409X(18)30222-9. doi: 10.1016/j.addr.2018.09.002

7. Valedkarimi Z., Nasiri H., Aghebati-Maleki L., et al. Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy. Review. Biomed. Pharmacother, 2017, 95, 731-742. doi: 10.1016/j.biopha.2017.07.160

8. Huang T.H., Chintalacharuvu K.R., Morrison S.L. Targeting IFN-alpha to B cell lymphoma by a tumor-specific antibody elicits potent antitumoractivities. J. Immunol., 2007, 179(10), 6881-6888.

9. Xuan C., Steward K.K., Timmerman J.M., et al. Targeted delivery of interferon-alpha via fusion to anti-CD20 results in potent antitumoractivity against B-cell lymphoma. Blood, 2010, 115(14), 2864-2871. doi: 10.1182/blood-2009-10-250555

10. Rossi E. A., Goldenberg D.M., Cardillo T.M., et al. CD20-targeted tetrameric interferon-α, a novel and potent immunocytokine for the therapy of B-cell lymphomas. Blood, 2009, 114(18), 3864-3871.

11. Rossi E. A., Rossi D.L., Cardillo T.M., et al. Preclinical studies on targeted delivery of multiple interferon-afpha-2b to HLA-DR in diverse hematological cancers. Blood, 2011, 118(7), 1877-1884.

12. Frey K., Zivanovic A., Schwager K., et al. Antibody-based targeting of interferon-alpha to the tumor neovasculature: a critical evaluation. Integrative Biology, 2011, 3(4), 468-478.

13. Kosobokova E.K., Pinyugina M.V., Kosorukov V.S. Obtaining biologically active human interferon-α-2b from plants of Nicotiana benthamiana. Biotekhnologiya, 2015, (4), 52-61.

14. Komarova T.V., Kosorukov V.S., Frolova O.Y., et al. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One, 2011, 6(3), 17541. doi: 10.1371

15. Gleba Y., Klimyuk V., Marillonnet S. Magnifection-a new platform for expressing recombinant vaccines in plants. Review. Vaccine, 2005, Mar 18, 23(17-18), 2042-2048.

16. Lico C., Chen Q., Santi L. Viral vectors for production of recombinant proteins in plants. Review. J. Cell Physiol., 2008, 216(2), 366-377. doi: 10.1002/jcp.21423

17. Voinnet O., Rivas S., Mestre P., Baulcombe D. An enchanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J., 2003, 33 (5), 949-956.



GOSNIIGENETIKA-FOOTER GOSNIIGENETIKA